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Abstract

This paper describes the system developed by
the Centre for English Corpus Linguistics for
the 2018 Duolingo SLAM challenge. It aimed
at predicting the successes and mistakes of
second language learners on each of the words
that compose the exercises they answered. Its
main characteristic is to include conjunctive
features, built by combining word ngrams with
metadata about the user and the exercise. It
achieved a relatively good performance, rank-
ing fifth out of 15 systems. Complementary
analyses carried out to gauge the contribution
of the different sets of features to the perfor-
mance confirmed the usefulness of the con-
junctive features for the SLAM task.

1 Introduction

This paper presents the participation of the Cen-
tre for English Corpus Linguistics (CECL) in the
2018 Duolingo shared task on Second Language
Acquisition Modeling (SLAM) which was held in
conjunction with the 13th Workshop on Innova-
tive Use of NLP for Building Educational Appli-
cations. The objective of the task is to build a
model to predict whether second language learn-
ers will make a mistake on each of the words (to-
kens) that compose the exercises they answered.
There were three tracks: English speakers learn-
ing Spanish (es en), Spanish speakers learning En-
glish (es en) and English speakers learning French
(en en).

To develop the model, the organizers of the
challenge made available a very large number of
exercises carried out by a large number of learn-
ers of Duolingo, a free online language-learning
platform, which attracted more than 200 million
learners since its launching in 2012 (see Settles et
al. (2018) for details). In this training set, the to-
kens on which each learner made a mistake were
marked, but the error itself was not provided. This

task is thus very different from the one at the root
of many applications of natural language process-
ing in the field of education that aim to automati-
cally evaluate texts produced by second language
learners (Weigle, 2013). The traditional approach
for the latter, which relies on linguistic indices
more or less strongly correlated with text quality
such as lexical richness, syntactic complexity and
especially the presence of errors of different types
(e.g., Burstein et al., 2004; Futagi et al., 2008;
Yannakoudakis et al., 2011; Santos et al., 2012;
Ramineni and Williamson, 2013; Somasundaran
et al., 2015; Bestgen, 2016, 2017), is obviously
not applicable to the SLAM challenge.

Compared to the automatic evaluation of learner
texts, the SLAM task has several advantages (+),
but also several disadvantages (-):

+ Each learner produced a relatively large num-
ber of responses allowing to estimate his or
her level of competence;

+ The learners’ responses are spaced out in
time making possible to try to model the evo-
lution of their competence throughout their
learning;

+ The same exercises were presented to a large
number of different learners making it pos-
sible to get a relatively good estimate of the
difficulty of each of them;

– The exercises are very short, as 99% of the
utterances consist of no more than six tokens,
which strongly limits the linguistic context
available for any NLP procedure;

– And above all, as indicated above, the prompt
to be processed by the learner is provided, but
not the actual answer.

As previous research of the CECL in this field
deals with the question of automatic evaluation
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and only partially took into account the tempo-
ral dimension of learning (Bestgen and Granger,
2014), I chose to break down the problem in two
steps:

• Try to get the best prediction without using
the sequential information available in the
dataset.

• Add the sequential information and see
whether it can improve the prediction.

Having not been successful in the second step,
I focused this report on the first. It is therefore not
really an attempt to model second language acqui-
sition, but to predict the successes and mistakes
of second language learners. The proposed sys-
tem can be seen as a baseline system since it does
not take into account the richest information made
available.

The developed system achieved a relatively
good performance since it ranks fifth out of 15
systems, but nevertheless at a respectable distance
from the best systems. Its main characteristic is to
include conjunctive features, built by combining
several primitive features. In machine learning,
these conjunctive features are classically obtained
by means of a polynomial kernel, but this has the
effect of greatly lengthening the time needed to
learn the model (Fan et al., 2008; Yoshinaga and
Kitsuregawa, 2012). It was more efficient to ob-
tain them manually and to use a (much faster) lin-
ear approach to learn the model.

The remainder of this report describes the
datasets made available for this challenge, the sys-
tem developed and the results obtained as well as
the analyzes performed to get a better idea of the
usefulness of the various components of the sys-
tem.

2 Data

As explained in Settles et al. (2018), each in-
stance to be categorized corresponded to a token
of an exercise that has been presented to a user
in one of three possible types of exercise, in one
of three possible types of session and at a given
time of his or her participation in the learning ac-
tivities of the Duolingo platform. Several other
metadata were provided for each exercise such as
the country from which a user had done it. For
each token, a series of morpho-syntactic features
were also provided. The datasets were very large.

The fr en dataset, which was by far the smallest,
contained more than 410 000 exercises and almost
1 200 000 tokens. The other data sets were approx-
imately 2.12 times (es en) and 2.83 times (en es)
larger.

These datasets were divided by the organizers
into three sets, the TRAIN set with 80% of the
data, the DEV set with 10% and the TEST set with
remaining 10%. The final results of the challenge
were determined by the organizers on the TEST
set. In this report, all the developments that led to
the predictive models were only done on the fr en
dataset because its smaller size allowed the fastest
processing. They were based on the TRAIN set to
build the models and on the DEV set for evalua-
tion.

3 System

3.1 Main Features Used
As a quick glance at the exercises, undertaken
by students during their first 30 days of learning
with the Duolingo platform (Settles et al., 2018),
suggested that they were relatively simple from a
lexical and syntactical point of view, I chose to
base the features on the tokens and to disregard
morpho-syntactic information.

Each instance (i.e., a token in an exercise) was
encoded as a vector of 47 binary features, consist-
ing of the following three feature sets:

• The main part (5 features) was composed of
the target token and the tokens (T) that sur-
round it in the exercise. For a token such
as “pas” (not) in the exercise “Ce n’ est pas
un sandwich” (This is not a sandwich), the
following five features were encoded: the tri-
gram including the two tokens that precede
it (n’ est pas), the bigram including the to-
ken that precedes it (est pas), the token itself
(pas), the bigram including the next token
(pas un) and the trigram including the two
following tokens (pas un sandwich)1. When
a ngram is incomplete because a token is too
close to the beginning or to end of the exer-
cise, the missing element is replaced by the
pseudo-token “<s>”.

1The trigram composed of the preceding token, the tar-
get token and the following token (est pas un) was not en-
coded. This was an oversight, fortunately without conse-
quences since the analyzes carried out after the end of the
challenge showed that taking into account this trigram and
the conjunctive features derived from it (8 features, see be-
low) did not improve the performances.
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• The second set of features (7 features) was
based on three metadata: the unique iden-
tifier for each student (U), the exercise for-
mat (F: three different values), and the ses-
sion type (S: three different values). These
features were encoded alone and in conjunc-
tion, producing the following features: U, F,
S, UF, US, FS and UFS.

• Finally, the conjunction of each token fea-
ture2 with each of the metadata feature, such
as n’ est pas UFS, was encoded (35 fea-
tures).

Each different type of feature was prefixed with
a unique character sequence to avoid any colli-
sion between features of different types. Of the 47
features used to encode each instance, some were
very common in the dataset, such as the format,
the session and their conjunctions, others were
moderately frequent such as a user id or a token,
but the majority was much rarer such as the con-
junction of a user, a format, a session and a tri-
gram.

3.2 Sequential Information Use
All the features, which included a target token and
had been previously seen by a user, were dupli-
cated with a new value that reflected the number
of times it had been seen, the proportion of mis-
takes this user made on it, and the time that had
elapsed since he or she had seen it for the last time.
These values were transformed by means of an ex-
ponential3 function. More details are not given on
these features because they were very inefficient
as shown in the analyzes reported below.

3.3 Procedure to Build the Models
The feature extraction was performed by means
of a series of custom SAS programs running
in SAS University (freely available for research
at http://www.sas.com/en us/software/university-
edition.html). The predictive models used dur-
ing the development phase were built on the fr en
dataset by means of the L1-regularized logistic
regression (L1-LR) available in the LIBLINEAR
package (-s 6, Fan et al., 2008). The only meta-
parameter that can be optimized was the regular-

2Technically, bigrams and trigrams can also be seen as
conjunctive features.

3Following a reviewer’s suggestion, a logarithm transfor-
mation was also tried, but it did not improve the performance
on the TRAIN and DEV fr en datasets.

ization parameter C. A series of tests carried out
on the TRAIN and DEV fr en sets led to setting
it to 0.75. It was also the L1-LR with this same
C parameter that was used in all the analyzes re-
ported here, except for the models used for the fi-
nal submission that were build by means of the L2-
regularized logistic regression (-s 7, L2-LR) be-
cause it appeared while preparing the submission
that it produced slightly higher performances.

4 Analyses and Results

All the performances are summarized in terms of
the area under the receiver operating characteris-
tic curve (AUROC), the challenge main evaluation
metric. The F1 score was also proposed as a sec-
ondary metric by the challenge organizers, but it is
not reported here because no attempt was made to
optimize it4.

In the tables presented below, T stands for the
Token ngrams, M for the Metadata, with U for
User, F for Format and S for Session, Mc for
the conjunctive features derived from the metadata
and TM for the conjunctive features derived from
the token ngrams and the metadata.

4.1 Performance on the Test Set
The performance and ranking of the base model
and of the model that takes into account the se-
quential information is given in Table 1 along with
the performances of the systems ranked first, those
of the two closest teams in the ranking and those of
the baseline provided by the organizers. As a re-
minder, the proposed models were developed for
the fr en dataset and simply applied to the two
other tracks. For the three tracks, the regulariza-
tion parameter C for the L2-LR was set on the ba-
sis of the TRAIN and DEV sets at the following
values: 0.10 for fr en and es en and 0.05 for en es.
The final models were learned on the concatenated
TRAIN and DEV sets.

The performances of the proposed models were
significantly better than the baseline, but not as
good as the best system. They were lower than
those of the team ranked fourth in two tracks, but
higher in the fr en track on the basis of which they

4Furthermore, simple tricks allow, at least in the present
case, to strongly improve it without harming the AUROC.
For example, the base model described in this paper gets an
AUROC of 0.8367 and an F1 of 0.4796 when C is set at 0.75
(on fr en TRAIN and DEV sets, see Table 2). If C is set
at 0.30 for the correct instances and at 0.84 for the mistakes
(using LIBLINEAR -wi parameter), the model keeps exactly
the same AUROC, but the F1 is now 0.5409.
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System en es es en fr en
First 0.861 0.838 0.857

Fourth 0.848 0.824 0.839
Sequential 0.846 0.818 0.843

Base 0.845 0.817 0.842
Sixth 0.841 0.807 0.835

Baseline 0.774 0.746 0.771

Table 1: Final performances (AUROC) for several sys-
tems.

T M Mc TM AUROC
x x x x 0.8367
x x x 0.8167
x x 0.8078
x 0.7488

Table 2: AUROC for several sets of features in the base
model.

were developed. The benefits brought by using
the sequential information were very small, prob-
ably because the procedure employed did not in-
troduce new features, but duplicated a number of
them with different values.

4.2 In-depth Analysis of the Feature Sets
The remainder of this report analyzes in detail the
contribution of the different sets of features to the
performance of the base model. All these analy-
ses were conducted on the TRAIN and DEV fr en
dataset as explained above.

First, the ablation approach was used to assess
the independent contribution of each set of fea-
tures to the overall performance of the system. It
consists in removing some sets of features of the
model and re-evaluating it.

As Table 2 shows, the conjunctive features, in-
cluding those built from the metadata alone, made
a significant contribution to performance. The
model that only includes the token ngrams clearly
underperformed. The metadata are thus necessary
to achieve an acceptable performance.

A second analysis was conducted to evaluate the
impact of the three lengths of ngrams in the base
model (Table 3). The results indicated that the tri-
grams were not very useful contrarily to the bi-
grams.

To get a better idea of the usefulness of the con-
junctive features, Table 4 presents the number of
features of each type to which the L1-LR assigned
a non-zero weight (Andrew and Gao, 2007). It
also indicates how many of these features were

Unigram Bigram Trigram AUROC
x x x 0.8367
x x 0.8340
x 0.8130

Table 3: AUROC for the three ngram lengths (base
model).

Type # # in Dev % in Dev
TU 14 996 4 975 33.2
TUS 10 651 2 396 22.5
TUF 9 507 2 643 27.8
TUFS 6 597 1 382 20.9
TF 6 436 5 993 93.1
TFS 5 854 5 072 86.6
T 4 938 4 717 95.5
TS 4 830 4 343 89.9
UFS 2 181 1 772 81.2
UF 1 948 1 877 96.4
US 1 151 990 86.0
U 854 849 99.4
FS 9 9 100.0
F 3 3 100.0
S 3 3 100.0
Total 70 624 37 668 53.3

Table 4: Number of features of each type selected by
the L1-LR. Note: The conjunctive features are represented
by the concatenation of the corresponding symbols.

present in the DEV set.
This table shows that the conjunctive features,

including the more complex ones, were frequently
selected by the L1-LR and that a non-negligible
proportion of them were present in the DEV set.
These are of course the types that encompassed
the largest number of different features.

However, an ablation approach on these feature
subtypes suggests that many conjunctive features
are not truly essential as shown in Table 5. The
first row of the table reports the performance of
the base model. The second section shows that the
conjunctions of four and three types of features are
not necessary for achieving this performance. The
third section indicates that it is the conjunctive fea-
tures including the tokens and the exercise format
on the other hand that make the most important
contribution (see below for instances). With re-
gard to the conjunctive features based on the meta-
data only, UF (alone or with Session in UFS) is the
most useful. The last line of the table corresponds
to the model without conjunctive features (except
the token ngrams). Overall, it appears that the Ses-
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T M UF US FS UFS TU TF TS TUF TUS TFS TUFS AUROC
x x x x x x x x x x x x x 0.8367
x x x x x x x x x x x x 0.8371
x x x x x x x x x x x 0.8367
x x x x x x x x x x x 0.8372
x x x x x x x x x x x 0.8368
x x x x x x x x x 0.8368
x x x x x x x x 0.8334
x x x x x x x x 0.8214
x x x x x x x x 0.8357
x x x x x x x 0.8203
x x x x x x x 0.8324
x x x x x x x 0.8178
x x x x x x 0.8167
x x x x x 0.8161
x x x x x 0.8170
x x x x x 0.8169
x x x x x 0.8175
x x x 0.8187
x x x 0.8075
x x x 0.8079
x x x 0.8165
x x 0.8078

Table 5: AUROC for several subsets of features in the base model.

sion metadata are not very useful.

All these observations confirm the interest of
some of the conjunctive features for the SLAM
task, the token ngrams being a specific type of
conjunctive features whose usefulness is well es-
tablished in NLP. Their interest can be illustrated
concretely by the two following examples. In the
fr en TRAIN set, users made 78% of errors on the
token “-” when it is preceded by the token “après”
(after), forming the bigram “après -” (N = 198)
found in “après-midi” (afternoon). This overall
percentage hides a large difference between the
reverse-tap exercises (N = 91) on which 100% of
errors were made and the reverse-translate exer-
cises (N = 51) in which 49% of errors were made.
The opposite profile is observed for the bigram
“Vous connaissez” (You know), whose target to-
ken is “connaissez”, for which there were in gen-
eral 66% of errors (N = 73). When presented in the
reverse-translate format, there were 94% of errors
(N = 48) while there were only 9% of errors in the
reverse-tap format (N = 22).

4.3 Conclusion

The base model presented in this paper does not
take into account the longitudinal nature of the
data made available by the organizers. Despite
this, it achieved relatively high performances,
ranking fifth out of 15 teams with an average
of 0.016 AUROC point less than the best team,
but it also outperformed nine team by more than
0.016 AUROC point. It must however be recog-
nized that the inclusion of longitudinal informa-
tion in this approach was inefficient. A psycholin-
guistically motivated approach would have prob-
ably produced better results (Settles and Meeder,
2016). The papers of the best teams participat-
ing in this challenge should allow to determine
whether they have used non-sequential features
that are identical or similar to those used here. If
it is not the case, it might be interesting to deter-
mine whether the conjunctive features used here
would allow to further improve their system per-
formances.

It would also be interesting to look at other
metadata provided by the organizers. In particular,
the country from which a user has done the exer-
cises could perhaps allow to take into account the
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L1 transfer, which is known to affect the type of
errors produced by learners of a foreign language
(Wong and Dras, 2009; Jarvis et al., 2013).

In a future edition of the challenge, it might
be interesting to include in the test set a larger
proportion of tokens that do not appear (or very
rarely) in the training set and to carry out part of
the evaluation separately on those tokens. In the
current datasets, only 116 of the 1 920 different
tokens present in the fr en TEST set were absent
from the TRAIN and DEV sets. Even more, these
116 different tokens represented only 0.12% of the
instances to categorize (168 out of 135 525). It
should be noted that the datasets included a siz-
able proportion of rarely seen tokens (i.e. 27%
of the different tokens in fr en TRAIN and DEV
sets were present at most 3 times), but they rep-
resented only a very small fraction of the TEST
set (less than 0.5%). Increasing the proportion of
new or infrequently seen tokens in the test materi-
als could favor the use of features that can be gen-
eralized to unseen tokens. If this path is followed,
it could be interesting to provide, in the training
datasets, the exercises and the mistakes actually
produced to further the development of predictive
models that try to figure out the relation between
a token and the mistake (while providing only the
exercises for the test material to avoid the use of
simple error detection systems).
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