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Abstract

Second Language Acquisition Modeling is the
task to predict whether a second language
learner would respond correctly in future ex-
ercises based on their learning history. In
this paper, we propose a neural network based
system to utilize rich contextual, linguistic
and user information. Our neural model con-
sists of a Context encoder, a Linguistic fea-
ture encoder, a User information encoder and
a Format information encoder (CLUF). Fur-
thermore, a decoder is introduced to combine
such encoded features and make final predic-
tions. Our system ranked in first place in the
English track and second place in the Span-
ish and French track with an AUROC score of
0.861, 0.835 and 0.854 respectively.

1 Introduction

Education systems that can adapt to the present-
ing of educational materials according to stu-
dents’ personal learning needs have great poten-
tial. Specifically, in the area of second language
learning, we try to predict whether the learning
materials are too easy or too hard for language
learners. Therefore, we study the Second Lan-
guage Acquisition Modeling (SLAM) task to build
a model of the language learning process.

Bayesian Knowledge Tracing (BKT) (Corbett
and Anderson, 1994; Pardos and Heffernan, 2010;
Pelánek, 2017) that models students’ knowledge
over time is a well-established problem. It takes
a Hidden Markov Model (HMM) with binary hid-
den states to represent knowledge acquisition for
each concept separately. BKT had been success-
fully applied to subjects like mathematics and pro-
gramming, where a limited number of concepts
can be predefined. However, in language learning,
it’s difficult to define a small number of concepts,
especially when the vocabulary size increases over
time. Deep Knowledge Tracing (DKT) (Piech

et al., 2015; Wilson et al., 2016) is a recent im-
plementation of knowledge tracing which uses Re-
current Neural Networks (RNNs) to model stu-
dent’s learning trace. Although RNNs and its
commonly used variants, such as Gated Recur-
rent Units (Cho et al., 2014) and Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997), are capable of exploring dynamic temporal
behavior for a time sequence, it’s hard to model
extremely long learning history that can range over
months even years. Half-life Regression (Settles
and Meeder, 2016) is a novel approach for the
SLAM task, which combines a psycholinguistic
model of human memory with modern machine
learning techniques. It had demonstrated state-of-
art performance for predicting student recall rates.

Mapping symbols, such as characters or words,
into a continuous space is a popular method in nat-
ural language processing (Hinton, 1986; Mikolov
et al., 2013; Pennington et al., 2014; Mikolov
et al., 2017). It achieved remarkable success in
many tasks, for example, neural language model-
ing (Bengio et al., 2003; Collobert and Weston,
2008; Mikolov et al., 2010), machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015), text
classification (Lai et al., 2015; Zhang et al., 2015;
Conneau et al., 2017), sentiment analysis (dos
Santos and Gatti, 2014; Poria et al., 2015) and ma-
chine reading comprehension (Xiong et al., 2017;
Hu et al., 2017). In this work, we introduce a sim-
ilar neural approach for the SLAM task, where we
use neural encoders to extract features from each
exercise as well as metadata about student and ses-
sion. To be specific, we build a Context encoder, a
Linguistic feature encoder, a User information en-
coder and a Format information encoder (CLUF)
to calculate high-level representations from char-
acters, words, part-of-speech (POS) labels, syn-
tactic dependency labels, user id and country, ex-
ercise type, client, etc.
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Track Set Users Exercises
Unique
Tokens

Positive
Ratio (%)

OOV Ratio
(%)

en es
Train 2593 824012 1967 12.6 -
Dev 2592 115770 1839 14.3 3.4
Test 2593 114586 1879 - 4.5

es en
Train 2643 731896 2525 14.1 -
Dev 2640 96003 2353 15.7 7.6
Test 2641 93145 2459 - 10.0

fr en
Train 1213 326792 1941 16.2 -
Dev 1206 43610 1671 17.6 7.1
Test 1206 41753 1707 - 5.9

Table 1: The SLAM dataset statistics

2 Dataset

The Duolingo SLAM dataset (Settles et al., 2018)
is organized into three language tracks:

• en es: English learners (who already speak
Spanish)

• es en: Spanish learners (who already speak
English)

• fr en: French learners (who already speak
English)

According to Table 1, most tokens (more than
80%) are perfect matches and are given the label
0 for “OK”. Tokens that are missing or spelled
incorrectly (ignoring capitalization, punctuation,
and accents) are given the label 1 denoting a mis-
take. Across the three language tracks, en es has
the lowest positive ratio, while es en has the high-
est out-of-vocabulary (OOV) ratio.

Table 2 shows the features provided with the
SLAM dataset. In our system, we used all fea-
tures except the morphology features and syntactic
dependency edges, as we did not get any improve-
ment during experiments. Perhaps it is because
that the neural networks already encoded similar
information from characters, words and their syn-
tactic dependency labels.

3 Method

We used in total four encoders to model the stu-
dents’ learning behavior. Inputs to these encoders
are embeddings learned from one-hot representa-
tions of raw features. The context encoder consists
of a character level LSTM encoder and a word
level LSTM encoder. The linguistic feature en-
coder is also a LSTM model, where POS and syn-

Category Features
Context word surface form

Linguistic

part of speech
morphology features
syntactic dependency edges
syntactic dependency labels

User
user id
countries
days in course

Format

client
session type
exercise format
response time

Table 2: Features provided with the SLAM task

tactic dependency embedding are concatenated to-
gether and then fed into a multilayer LSTM unit.
At last, user encoder and format encoder are both
fully-connected neural networks. The user en-
coder takes account of user id, users’ national-
ity and other user related information, while the
format encoder encodes exercise format, session
type, client type and time used for the exercise.
The decoder combines the outputs of these en-
coders and then makes predictions through a sig-
moid unit.

3.1 Context Encoder

The context encoder operates at both the word
level and the character level. The word level en-
coding is capable of capturing better semantics
and longer dependency than the character level
encoding. But learning new words is a key part
in language learning. By modeling the character
sequence, we may be able to learn certain word
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a cute cat
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Word encoder
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Figure 1: The Word Level Context Encoder

formation rules, therefore partially avoid the OOV
problem.

The word level context encoder is a Bidirec-
tional LSTM model. Given a sequence of words
represented as one-hot vectors (w1, w2, ..., wN ),
we can get the word embedding of wt as

xt = Ew · wt,

where Ew is the word embedding matrix, which is
learned during training.

Given the input vector xt, the forward, back-
ward, and combined activations of the j-th hidden
layer are computed as

f jt = LSTM(f jt−1, f
j−1
t )

bjt = LSTM(bjt+1, b
j−1
t )

gt = [fK0
t , bK0

t ],

where K0 is the number of layers of the network,
j = 1, 2, ...,K0.

The character level context encoder is a hi-
erarchical LSTM model. Given a sequence of
one-hot representations of characters in word wt,
(c1, c2, ..., cM ), we can get the embedding of ci
as

h0i = Ec · ci,

where Ec is the character embedding matrix,
which is learned during training.

The outputs of the lookup layer are then fed into
a multilayer LSTM unit

hji = LSTM(hji−1, h
j−1
i )

Hwt = (hK1
1 , hK1

2 , ..., hK1
M ),

where K1 is the number of layers of the LSTM,
j = 1, 2, ...,K1.

a c u t e c a t

Lookup
layer

LSTM
layer

Mean over
Time

BiLSTM
layer

Character
encoder outputs

Figure 2: The Character Level Context Encoder

The mean-over-time (MoT) layer takes Hwt as
inputs

hwt =
1

M

M∑

i=1

hK1
i ,

Then the outputs of the MoT layer (hw1 , hw2 , ...,
hwN ) are inputs to a Bidirectional LSTM model,

f̂ jt = LSTM(f̂ jt−1, f̂
j−1
t )

b̂jt = LSTM(b̂jt+1, b̂
j−1
t )

ĝt = [f̂K2
t , b̂K2

t ],

where K2 is the number of layers of the BiLSTM,
j = 1, 2, ...,K2.

The final outputs of the context encoder are
computed as:

O = (o1, o2, ..., oN ),

where ot = gt + ĝt.

3.2 Linguistic Feature Encoder

The linguistic feature encoder is also a LSTM
model. Similar to the context encoder, we trained
embedding representations of the POS labels and
the syntactic dependency labels. The POS embed-
dings and syntactic dependency embeddings are
concatenated together and then fed into a LSTM
unit,

l0t = [post, dept]

ljt = LSTM(ljt−1, l
j−1
t )

L = (lK3
1 , lK3

2 , ..., lK3
N ),
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where post is the POS embedding of word wt and
dept is the syntactic dependency label embedding
of word wt. j is the layer index, and we have K3

layers in this LSTM unit.

3.3 User Encoder
The user encoder is a one-layer fully-connected
feedforward network. The encoder takes user
metadata as inputs

µ0 = [u, s, days]

µ1 = tanh(Wµ · µ0 + bµ),

where u is the embedding of the user id, s is the
embedding of the user’s nationality and days is
the time since the student started learning this lan-
guage. Wµ, bµ are trained network parameters.
We used the tanh activation function for the user
encoder.

3.4 Format Encoder
Similar to the user encoder, the format encoder is
also a one-layer fully-connected feedforward net-
work. The inputs are format, session, client, and
the response time,

f0 = [format, session, client, time]

f1 = tanh(Wf · f0 + bf ),

where Wf , bf are trainable parameters.

3.5 Decoder
The decoder takes the outputs (O, L, µ1, f1) of the
context encoder, linguistic encoder, user encoder
and format encoder as inputs. The prediction for
word wt in the given sequence (w1, w2, ..., wN )
is computed as

ν = σ(Wν · [µ1, f1] + bν)

γt = σ(Wγ · [lK3
t , ot] + bγ)

pt = σ(Wp · (ν � γt) + bp),

where Wν , bν , Wγ , bγ , Wp, and bp are trainable
parameters. For decoding, we used the sigmoid
activation function σ.

3.6 Training
The model is trained to minimize the following
loss function

Loss = − 1

N

N∑

t=1

(αyt · log(pt) +

(1− α)(1− yt) · log(1− pt)),

Team AUROC F1
SanaLabs 0.861 0.561
our model 0.861 0.559
alexrich 0.859 0.468
Masahiro 0.848 0.476
zz 0.846 0.414
Cam 0.841 0.479
btomosch 0.829 0.424
LambdaLearning 0.821 0.389
nihalnayak 0.821 0.376
... ... ...
baseline 0.774 0.190

Table 3: Results of the en es track.

Team AUROC F1
SanaLabs 0.838 0.530
our model 0.835 0.524
alexrich 0.835 0.420
Masahiro 0.824 0.439
zz 0.818 0.390
Cam 0.807 0.435
btomosch 0.803 0.375
LambdaLearning 0.801 0.344
Grotoco 0.791 0.452
... ... ...
baseline 0.746 0.175

Table 4: Results of the es en track.

where α is the hyper parameter to balance the neg-
ative and positive samples and yt is the label of the
time step t. In our experiment, we set α to 0.7.

4 Experiments and Results

4.1 Experiments

We considered the words that appear less than five
times in the training data as unknown token. For
students with more than one nationality, only the
first one was used.

The embedding size was set to 100, and the
Dropout (Srivastava et al., 2014) regularization
was applied, where the dropout rate was set to
0.5. We used the Adam optimization algorithm
(Kingma and Ba, 2014) with a learning rate of
0.001. The word level context encoder was a two-
layer Bidirectional LSTM. The character level
context encoder had one LSTM layer for encoding
each word and three Bidirectional LSTM layers
above the MoT layer. Furthermore, the linguistic
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Team AUROC F1
SanaLabs 0.857 0.573
our model 0.854 0.569
alexrich 0.854 0.493
zz 0.843 0.487
Masahiro 0.839 0.502
Cam 0.835 0.508
btomosch 0.823 0.442
LambdaLearning 0.815 0.415
Grotoco 0.813 0.502
... ... ...
baseline 0.771 0.281

Table 5: Results of the fr en track.

Term en es es en fr en
Relative impr (%) 11.24 11.93 9.72

Table 6: The relative improvement over the base-
line

encoder was a two-layer LSTM. Both of the user
encoder and format encoder were one-layer fully-
connected feedforward networks.

4.2 Results

The evaluation metrics for the SLAM task were
the Area Under the Receiver Operation Character-
istic (AUROC) curve and the F1 score.

As provided in Table 3, Table 4 and Table 5, our
model achieved the AUROC score of 0.861, 0.835,
and 0.854 and the F1 score of 0.559, 0.524 and
0.569 for the en es, es en, and fr en track, respec-
tively. We ranked in first place in the en es track
and second place in the es en and fr en track.

Table 6 shows that CLUF gained significant im-
provements on all tracks compared to the baseline
model. The improvement on the en es and es en
track were close, while the improvement on the
fr en track was a bit lower. We think this is be-
cause the fr en (327k exercises) track has much
less training data than the en es (824k exercises)
and es en (732k exercises) track.

4.3 Discussion

Our intuition behind CLUF is to factorize raw fea-
tures into four independent parts: 1) word surface
form models the word formation rules; 2) the lin-
guistic encoder is to provide linguistic and syntac-
tic dependency information; 3) the user part ex-
plores students’ second language acquisition skills

Model AUROC F1
CLUF 0.846 0.554
LUF 0.775 0.446
CUF 0.843 0.552
CLF 0.813 0.501
CLU 0.779 0.467

Table 7: Encoder analysis. LUF has no context
encoder; CUF has no linguistic encoder; CLF has
no user encoder; CLU is the model without format
encoder.

over time; 4) the format encoder measures the
difficulty level of different exercises on various
clients.

Table 7 shows the performance of our CLUF
model when excluding one of the context, linguis-
tic, user and format encoder. We can see that the
performance drops substantially if we don’t use
the contextual or format features. On the other
hand, excluding the linguistic features does not
affect the performance much. At last, we can
achieve fairly good performance even if we don’t
use any user information.

5 Conclusion

We presented a neural network based model,
CLUF, for the SLAM task. We encoded the con-
textual, linguistic, user and format features sepa-
rately. Our system achieved one of the best re-
sults in this task. Moreover, our CLUF model was
language invariant, as it performed approximately
equally well across three language tracks. We fur-
ther explored how effective each encoder was. We
found that the context encoder was the most effec-
tive one, while the linguistic encoder was the least
effective one.
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